Азот в атмосфере

Cвойства аммиака.

Некоторые физические свойств аммиака в сравнении с водой приведены в табл. 3.

Таблица 3. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АММИАКА И ВОДЫ
Свойство Аммиак Вода
Плотность, г/см3 0,65 (–10° С) 1,00 (4,0° С)
Температура плавления, °С –77,7
Температура кипения, °С –33,35 100
Критическая температура, °С 132 374
Критическое давление, атм 112 218
Энтальпия испарения, Дж/г 1368 (–33° С) 2264 (100° С)
Энтальпия плавления, Дж/г 351 (–77° С) 334 (0° С)
Удельная электропроводность 5Ч10–11 (–33° С) 4Ч10–8 (18° С)

Температуры кипения и плавления у аммиака намного ниже, чем у воды, несмотря на близость молекулярных масс и сходство строения молекул. Это объясняется относительно большей прочностью межмолекулярных связей у воды, чем у аммиака (такая межмолекулярная связь называется водородной).

Литература

  • Некрасов Б. В., Основы общей химии, т. 1, М.: «Химия», 1973;
  • Химия: Справ. изд./В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. 2-е изд., стереотип. — М.: Химия, 2000 ISBN 5-7245-0360-3 (рус.), ISBN 3-343-00208-9 (нем.);
  • Ахметов Н. С., Общая и неорганическая химия. 5-е изд., испр. — М.: Высшая школа, 2003 ISBN 5-06-003363-5;
  • Гусакова Н. В., Химия окружающей среды. Серия «Высшее образование». Ростов-на-Дону: Феникс, 2004 ISBN 5-222-05386-5;
  • Исидоров В. А., Экологическая химия. СПб: Химиздат, 2001 ISBN 5-7245-1068-5;
  • Трифонов Д. Н., Трифонов В. Д., Как были открыты химические элементы — М.: Просвещение, 1980
  • Справочник химика, 2-е изд., т. 1, М.: «Химия», 1966;

Применение

Газообразный азот

Промышленное применение газообразного азота обусловлено его инертными свойствами. Газообразный азот пожаро- и взрывобезопасен, препятствует окислению, гниению. В нефтедобывающей промышленности газообразный азот применяется для обеспечения безопасного бурения, используется в процессе капитального и текущего ремонта скважин. Кроме того, газообразный азот высокого давления используют в газовых методах повышения нефтеотдачи пласта. В нефтехимии азот применяется для продувки резервуаров и трубопроводов, проверки работы трубопроводов под давлением, увеличения выработки месторождений. В горнодобывающем деле азот может использоваться для создания в шахтах взрывобезопасной среды, для распирания пластов породы, тушения эндогенных пожаров. В производстве электроники азот применяется для продувки областей, не допускающих наличия окисляющего кислорода. Если в процессе, традиционно проходящем с использованием воздуха, окисление или гниение являются негативными факторами — азот может успешно заместить воздух.

Газообразным азотом заполняют камеры шин шасси летательных аппаратов. Кроме того, в последнее время заполнение шин азотом стало популярно и среди автолюбителей, хотя однозначных доказательств эффективности использования азота вместо воздуха для наполнения автомобильных шин нет.

Жидкий азот

Жидкий азот применяется как хладагент и для криотерапии.

Слабокипящий жидкий азот в металлическом стакане.

Важной областью применения азота является его использование для дальнейшего синтеза самых разнообразных соединений, содержащих азот, таких, как аммиак, азотные удобрения, взрывчатые вещества, красители и т. п. Более ¾ промышленного азота идёт на синтез аммиака

Большие количества азота используются в коксовом производстве («сухое тушение кокса») при выгрузке кокса из коксовых батарей, а также для «передавливания» топлива в ракетах из баков в насосы или двигатели.

В пищевой промышленности азот зарегистрирован в качестве пищевой добавки E941, как газовая среда для упаковки и хранения, хладагент, а жидкий азот применяется при разливе масел и негазированных напитков для создания избыточного давления и инертной среды в мягкой таре.

Жидкий азот нередко демонстрируется в кинофильмах в качестве вещества, способного мгновенно заморозить достаточно крупные объекты. Это широко распространённое заблуждение. Даже для замораживания цветка необходимо достаточно продолжительное время. Это связано отчасти с весьма низкой теплоёмкостью азота. По этой же причине весьма затруднительно охлаждать, скажем, замки до −196 °C и раскалывать их одним ударом.

Литр жидкого азота, испаряясь и нагреваясь до 20 °C, образует примерно 700 литров газа. По этой причине жидкий азот хранят в специальных сосудах Дьюара с вакуумной изоляцией открытого типа или криогенных ёмкостях под давлением. На этом же факте основан принцип тушения пожаров жидким азотом. Испаряясь, азот вытесняет кислород, необходимый для горения, и пожар прекращается. Так как азот, в отличие от воды, пены или порошка, просто испаряется и выветривается, азотное пожаротушение — самый эффективный с точки зрения сохранности ценностей механизм тушения пожаров.

Заморозка жидким азотом живых существ с возможностью последующей их разморозки проблематична. Проблема заключается в невозможности заморозить (и разморозить) существо достаточно быстро, чтобы неоднородность заморозки не сказалась на его жизненных функциях. Станислав Лем, фантазируя на эту тему в книге «Фиаско», придумал экстренную систему заморозки азотом, в которой шланг с азотом, выбивая зубы, вонзался в рот астронавта и внутрь его подавался обильный поток азота.

В качестве легирующей добавки к кремнию, образует высокопрочное соединение (керамику) нитрид кремния, обладающее высокой вязкостью и прочностью.

6. Тренировки

Тренировки и активный образ жизни удивительным образом сказываются на всех сторонах жизни. В конце концов, мы не были предназначены для сидения целый день.

Мы постоянно должны быть в движении, ходить пешком, заниматься скалолазанием, и т.д.

Практически во время всех видов физических упражнений (от хождения до неистовых силовых тренировок) происходит увеличение уровня окиси азота, как временно, так и на постоянной основе.

Кроме того, если вы посещаете спортзал регулярно, выработка оксида азота увеличится по мере того, как ваши мышцы увеличиваются в размерах. В некотором смысле, ваше тело замечает, что мышцам нужно больше крови, кислорода и питательных веществ, поэтому оно увеличивает синтез окиси азота и, таким образом, также увеличивается ваш естественный уровень оксида азота…

… Это одна из причин, почему у культуристов слишком сильно выступают кровеносные сосуды.

Промышленное производство

В настоящее время в основном используют три технологии для получения инертного азота, основанные на разделении атмосферного воздуха:

  • криогенная;
  • мембранная;
  • адсорбционная.

Разделяющие криогенные установки функционируют по принципу сжижения воздуха. Сначала он сжимается компрессором, затем проходит через теплообменники и расширяется в детандере. В результате охлажденный воздух становится жидкостью. За счет разной температуры кипения кислорода и азота происходит их разделение. Процесс многократно повторяется на специальных ректификационных тарелках. Завершается он получением чистейшего кислорода, аргона и азота. Данный способ наиболее эффективен для крупных предприятий по причине значительных габаритов системы, сложности ее пуска и обслуживания. Достоинство метода состоит в том, что можно получить азот наивысшей чистоты, как жидкий, так и газообразный, в любых количествах. При этом расход энергии на изготовление 1 л вещества составляет 0,4-1,6 кВт/ч (в зависимости от технологической схемы установки).

Мембранная технология разделения газов начала применяться в 70-х годах прошлого века. Высокая экономичность и эффективность данного метода послужила достойной альтернативой криогенному и адсорбционному способам получения чистого азота. Сегодня в установках используются мембраны последнего поколения высокой производительности. Теперь это не пленка, а тысячи полых волокон, на которые нанесен селективный слой. Подвижные составляющие в установке отсутствуют, поэтому значительно увеличивается продолжительность ее эксплуатации без поломок. Отфильтрованный воздух подается в систему. Кислород беспрепятственно проходит сквозь нее, а азот выводится под давлением через противоположную сторону мембраны и направляется в накопитель. С помощью данных установок изготавливается вещество с чистотой до 99,95%. Таким образом осуществляется производство азота из атмосферного воздуха. Ограниченная чистота получаемого азота не позволяет применять данный метод крупным изготовителям с большими потребностями высокочистого азота.

На тех предприятиях, где востребован азот высокой чистоты в больших объемах, применяется установка для разделения газовых смесей при помощи адсорбентов. Конструктивно она представляет собой две колонны. В каждой из них находится вещество, селективно поглощающее газовую смесь. Для функционирования установок по производству азота требуется атмосферный воздух, электроэнергия.

Изначально воздух попадает в компрессор, где происходит его сжатие. Затем он подается в ресивер, который выравнивает его давление. Так как воздух не должен содержать водяных паров, пыли, двуокиси углерода, окислов азота, ацетилена, а также других примесей, его фильтруют. Наступает основной этап адсорбционного разделения газовой смеси. Поток воздуха пропускается через одну колонну с углеродными молекулярными ситами до тех пор, пока они способны поглощать кислород. После этого поверхность адсорбента необходимо очистить, то есть регенерировать, путем сброса давления или повышением температуры. А воздух направляется во вторую колонну. В это время азот проходит сквозь агрегат и накапливается в ресивере. Продолжительность циклов адсорбции и регенерации составляет всего несколько минут. Чистота получаемого по данной технологии азота составляет 99,9995%.

Преимущества адсорбционных установок:

  • быстрый пуск и остановка;
  • возможность дистанционного управления;
  • высокая разделительная способность;
  • низкое энергопотребление;
  • возможность оперативной переналадки;
  • автоматическое регулирование режима;
  • низкие затраты на обслуживание.

Какие культуры важно обработать в первую очередь

Больше остальных в азоте нуждаются овощи. Если в планах — собрать хороший урожай капусты или тыквы, баклажанов и кабачков, картофеля и перца, то стоит подкармливать грунт во время посадки, в период роста и цветения.

В большом объеме азот потребляют плодово-ягодные и декоративные культуры (вишня, кусты малины и ежевики, фиалки, розы и пионы). Помочь растениям хорошо развиваться можно внесением аммиачной селитры из расчета 25 г на 1 кв. м.

Меньшие дозы азота требуются свекле, томатам и огурцам, морковке, кукурузе и зелени, яблоням, смородине, крыжовнику и однолетним декоративным цветам. Достаточно взять 20 г азота на 1 кв. м участка.

Примерно 15 г азотных удобрений на 1 кв. м участка вносят под лук, редис, листовые овощи и ранний картофель. Столько же требуется грушам и луковичным растениям на клумбе.

Меньше всего в азотных подкормках нуждаются горох и бобовые, вереск, азалия, пряные культуры, мак. Им хватает 8 г удобрения на 1 кв. м.

По весне деревьям и кустарникам помогут комплексные органические азотные удобрения в виде 1–2 кг помета или 0,5 ведра навоза (перепревшего) на 1 кв. м земли вокруг ствола.

Вместо органики подойдут и минеральные подкормки, такие как аммиачная селитра, аммофоска.

Если не перекармливать почву азотом, урожай будет обильным, качественным и безопасным.

Соединения азота

Свободный азот при обычных температурах химически инертен; при высокой температуре вступает в соединение со многими элементами.

С водородом азот образует ряд соединений, основными из которых являются следующие:

1. Аммиак (см.). Азот, входящий в состав аммиака, принято называть аммиачным азотом. В санитарно-гигиенической практике определение аммиачного азота производят при исследовании питьевых вод, при изучении процессов гниения белковых веществ (в частности, мяса и рыбы) и так далее.

2. Гидразин (N2H4) — бесцветная, дымящая на воздухе жидкость. С кислотами образует соли гидразина, например, с соляной кислотой — хлористый гидразоний (N2H4-HCl). Применяется как сильный восстановитель

Органические соединения гидразина имеют важное значение для характеристики Сахаров (см. Углеводы).

3. Азотистоводородная кислота (HN3) — бесцветная, кипящая при t° 37° жидкость с резким запахом. Взрывается с большой силой при нагревании. В водных растворах устойчива и проявляет свойства слабой кислоты. Соли ее — азиды — неустойчивы и взрываются при нагревании или ударе. Азид свинца Pb(N3)2 применяется в качестве детонатора. Вдыхание паров HN3 вызывает сильную головную боль и раздражение слизистых оболочек.

С кислородом азот образует пять окислов.

1. Закись азота, или веселящий газ (N2O), — бесцветный газ, получают при нагревании (выше 190°) азотнокислого аммония:

NH4NO3 = N2O + 2H2O.
В смеси с кислородом закись азота применяют как слабый наркотик, вызывающий состояние опьянения, эйфории, притупление болевой чувствительности. Применяется для ингаляционного наркоза (см.).

2. Окись азота (NO) — бесцветный газ, плохо растворимый в воде; в лабораториях получают действием азотной кислоты средней концентрации на медь:

8HNO3 + 3Cu = 2NO + 3Cu (NO3)2 + 4H2O,
в технике — продуванием воздуха через пламя электрической дуги. На воздухе мгновенно окисляется, образуя красно-бурые пары двуокиси азота; вместе с последней вызывает отравления организма (см. ниже — Профессиональные вредности соединений азота).

3. Двуокись азота (NO2) — красно-бурый газ, имеющий характерный запах и состоящий из собственно двуокиси А. и ее бесцветного полимера — четырехокиси азота (N2O4) — азотноватого ангидрида. Двуокись азота легко сгущается в красно-бурую жидкость, кипящую при t° 22,4° и затвердевающую при t° — 11° в бесцветные кристаллы. Растворяется в воде с образованием азотистой и азотной кислот:

2NO2 + H2O = HNO2 + HNO3.

Является сильным окислителем и опасным ядом. Двуокись азота образуется при получении азотной кислоты, при реакциях нитрования, травлении металлов и тому подобное и поэтому представляет собой профессиональный яд.

4. Трехокись азота, ангидрид азотистой к-ты (N2O3), — темно-синяя жидкость, затвердевающая при t° — 103° в голубые кристаллы. Устойчива лишь при низких температурах. С водой образует слабую и непрочную азотистую кислоту, со щелочами — соли азотистой кислоты — нитриты.

5. Пятиокись азота, ангидрид азотной к-ты (N2O5), — бесцветные призматические кристаллы, имеющие плотность 1,63, плавящиеся при t° 30° в желтую, слегка разлагающуюся жидкость; разложение усиливается при нагревании и при действии света. Температура кипения около 50°. С водой образует сильную, довольно устойчивую азотную кислоту, со щелочами — соли этой кислоты — нитраты.

При нагревании азот непосредственно соединяется со многими металлами, образуя нитриды металлов, например Li3N, Mg3N2, AlN и др. Многие из них разлагаются водой с образованием аммиака, например

Mg3N2 + 6H2O = 2NH3 + 3Mg(OH)2.

Азот входит в состав большого числа органических соединений, среди которых особое значение имеют алкалоиды, аминокислоты, амины, нитросоединения, цианистые соединения и наиболее сложные природные соединения — белки.

Фиксация атмосферного азота. В течение долгого времени исходными веществами для получения разнообразных соединений азота, необходимых для сельского хозяйства, промышленности и военного дела, служили природная чилийская селитра и аммиак, получаемый при сухой перегонке каменного угля. С истощением залежей чилийской селитры человечеству грозил «азотный голод». Проблема азотного голода была разрешена в конце 19 и начале 20 века путем разработки ряда промышленных методов фиксации атмосферного азота. Наиболее важным из них является синтез аммиака по схеме:

N2 + 3H2 <-> 2NH3

(см. Аммиак).

Особенности процедуры

Лечебное действие жидкого азота основано на его низкой температуре. В зависимости от типа процедуры замораживание может вызвать либо разрушение и отторжение патологических тканей, либо резкое сужение кровеносных сосудов и их последующее расширение, значительно увеличивающее приток крови к месту обработки кожи.

Криотерапия жидким азотом проводится с помощью специального аппликатора – деревянной палочки 25-30 сантиметров длиной, на конце которой закреплен ватный тампон размером несколько превышающий размер удаляемого элемента на коже.

Также для процедуры может использоваться криоаппликатор в виде тубуса-резервуара для жидкого азота со специальными сменными насадками различной формы в зависимости от проводимой процедуры.

Криоаппликатор

Непосредственно перед процедурой участок будущего воздействия азота обрабатывают 70° спиртом.

Удаление бородавок, гипертрофических рубцов и угревой сыпи происходит посредством глубокой заморозки удаляемого дефекта кожи.

Для этого под небольшим давлением около 30 секунд проводится плотная фиксация аппликатора над удаляемым образованием.  Примерно через минуту после замораживания в области обработки кожи жидким азотом развивается гиперемия (резкий приток крови) и отек, а еще спустя несколько часов формируется либо эпидермиальный пузырь, либо плотная корочка, которая через несколько дней отторгается, оставляя на месте себя практически незаметное розовое пятно.

Удаление бородавки жидким азотом

В ситуации, когда необходимо лишь поверхностное действие на кожу, жидкий азот применяется непродолжительно (10-15 секунд) в виде криомассажа.

Ватный тампон погружается в емкость с жидким азотом и проводится по массажным линиям либо в проблемной области кожи.

Таким образом удаляются папилломы, розовые угри, проводится массаж для лечения некоторых видов алопеции (облысения).

При лечении алопеции проводится расчесывание волос и кожи головы, и параллельно этому проводятся быстрые вращательные движения аппликатором с жидким азотом.

ВАЖНО: Локальная криотерапия широко используется как в медицинских, так и в косметологических целях, позволяя очень быстро добиваться желаемого результата и практически не вызывая негативных последствий после процедуры

Оксид азота(IV)

NO2 (диоксид азота) также имеет в молекуле неспаренный электрон (см. выше оксид азота(II)). В строении молекулы предполагается трехэлектронная связь, и молекула проявляет свойства свободного радикала (одна линия соответствует двум спаренным электронам):

NO2 получается каталитическим окислением аммиака в избытке кислорода или окислением NO на воздухе:

а также по реакциям:

При комнатной температуре NO2 – газ темнокоричневого цвета, обладает магнитными свойствами благодаря наличию неспаренного электрона. При температурах ниже 0° C молекула NO2 димеризуется в тетраоксид диазота, причем при –9,3° C димеризация протекает полностью: 2NO2 N2O4. В жидком состоянии недимеризовано только 1% NO2, а при 100° C остается в виде димера 10% N2O4.

NO2 (или N2O4) реагирует в теплой воде с образованием азотной кислоты: 3NO2 + H2O = 2HNO3 + NO

Технология NO2 поэтому очень существенна как промежуточная стадия получения промышленно важного продукта – азотной кислоты

Немного истории открытия азота

Внешний вид вещества

Жидкий азот. При н.у. — газ без цвета, вкуса и запаха.

Свойства атома
Имя, символ, номер Азот / Nitrogenium (N), 7
Атомная масса
(молярная масса)
14,00674 а. е. м. (г/моль)
Электронная конфигурация 2s2 2p3
Радиус атома 92 пм
Химические свойства
Ковалентный радиус 75 пм
Радиус иона 13 (+5e) 171 (-3e) пм
Электроотрицательность 33,04 (шкала Полинга)
Степени окисления 5, 4, 3, 2, 1, 0, −1, −3
Энергия ионизации
(первый электрон)
1401,5 (14,53) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 0,808 г/см3 (−195,8 °C); при н.у. 0,001251 г./см3
Теплота плавления (N2) 0,720 кДж/моль
Температура кипения 77,4 K
Теплота испарения 0,904 кДж/моль
Молярная теплоёмкость 29,125(газ N2) Дж/(K·моль)
Молярный объём 17,3 см3/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая
Параметры решётки 5,661 Å
Прочие характеристики
Теплопроводность (300 K) 0,026 Вт/(м·К)

Генри Кавендишем еще в 1772 году был осуществлен интересный эксперимент, позволивший выделить новое простое вещество — азот. Исследователь выделил азот, но не сумел его распознать. Эксперимент заключался в следующем: над раскаленным углем многократно пропускался воздух, который впоследствии обрабатывался щелочью. Такие манипуляции позволили ученому выделить остаток, который им был определен, как мефитический или удушливый воздух.

Если рассматривать данный эксперимент с точки зрения современной химии, можно прийти к выводу, что кислород, находящийся в потоке воздуха, вступая в реакцию с раскаленным углем, связывался в углекислый газ. Щелочь, которая была задействована на следующем этапе эксперимента, поглощала полученное углекислое соединение. Таким образом, можно прийти к простому выводу, что полученный остаток в большей своей части являлся азотом, который экспериментатор сумел путем достаточно простых действий выделить из атмосферного воздуха.

Не сумев правильно установить полученное вещество, Генри Кавендиш в том же 1772 году сообщил о результатах своей работы Джозефу Пристли, который в то же самое время работал над решением аналогичной задачи. Он осуществлял эксперименты, намереваясь связать кислород и удалить полученный, таким образом, углекислый газ. Джозеф Пристли в те времена являлся приверженцем теории флогистона. Соответственно, он абсолютно неправильно истолковывал получаемые результаты и был абсолютно уверен в том, что не кислород вытесняется из воздуха, а наоборот. Пристли не сомневался, что в процессе производимых им манипуляций происходит насыщение воздуха флогистоном. Таким образом, он именовал оставшийся воздух (то есть практически азот) флогистированным, что означало — насыщенным флогистоном.

Оба эти экспериментатора хоть и нашли способы выделить из воздуха азот, но не считаются его первооткрывателями вследствие ошибочного толкования результатов своей деятельности. Карл Шееле в те же времена занимался аналогичной деятельностью, а Даниэль Резерфорд все в том же 1772 году опубликовал магистерскую диссертацию, в которой упомянул азот, используя термин «испорченный воздух». Резерфордом в своей научной работе были указаны основные свойства азота. Им абсолютно верно было установлено следующее:

  • отсутствие взаимодействия полученного газа со щелочами;
  • непригодность использования его для дыхания;
  • выделенный газ не поддерживает горения.

В связи с верными выводами именно Даниэля Резерфорд многие признали первооткрывателем азота. К сожалению, он также, как и Джозеф Пристли был приверженцем флогистонной теории, поэтому так и не смог осознать, что именно за вещество ему удалось выделить из обычного атмосферного воздуха. Анализируя все вышесказанное, можно прийти к выводу, что точно определить, кто же именно открыл азот, не представляется возможным. Азот и далее подвергался исследованию многими учеными, которые все-таки со временем определили полный спектр его характеристик, что позволило в наши дни использовать данный газ во многих сферах профессиональной деятельности человека.

Области применения газа

Сегодня данный продукт востребован во многих отраслях промышленности: газовой, пищевой, металлургической. Однако крупные масштабы добычи азота актуальны именно для нефтехимической индустрии. Основная область применения – изготовление одноименной кислоты и других удобрений для сельского хозяйства. В технике азот используют для охлаждения различного оборудования и агрегатов. Он создает инертную среду при перекачивании горючих жидкостей.

В фармацевтике азот применяют для транспортировки химического сырья, защиты резервуаров и упаковки лекарственных средств. В электронике он предотвращает окисление в процессе производства полупроводников.

В пищевой промышленности азот в жидком состоянии используется как охлаждающий и замораживающий элемент. В газообразном виде его применяют в целях создания инертной среды при розливе негазированных напитков и масел, а также производят пропеллент для баллончиков.

Наиболее эффективный способ тушения пожаров – азотное пожаротушение. Испаряясь, вещество быстро вытесняет кислород, который требуется для поддержания горения, и огонь затухает. Затем азот быстро выветривается из помещения, при этом сберегаются материальные ценности, которые могли быть повреждены пеной, порошком или водой.

В медицине при помощи криогенной консервации сохраняют клетки и органы. Кроме того, жидким азотом разрушают пораженные участки тканей.

[править] Литература

  • Глоссарий терминов по химии // Й.Опейда, О.Швайка. Ин-т физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Донецкий национальный университет — Донецк: «Вебер», 2008. — 758 с. ISBN 978-966-335-206-0
  • Украинская советская энциклопедия. В 12-ти томах / Под ред. М. Желаемая. — 2-е изд. — К. : Гол. редакция УРЕ, 1974—1985.
  • Ф. А. Деркач «Химия» Л. 1968
  • Малая горная энциклопедия . В 3-х т. / Под ред. В. С. Белецкого. — Донецк: Донбасс, 2004.

Периодическая система химических элементов Д. И. Менделеева
                             
H   He
Li Be   B C N O F Ne
Na Mg   Al Si P S Cl Ar
K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
Uue Ubn Ubu Ubb Ubt Ubq Ubp Ubh  
Щелочные металлы Щёлочноземельные металлы Лантаноиды Актиноиды Суперактиноиды Переходные металлы Другие металлы Полуметаллы Другие неметаллы Галогены Благородные газы Свойства неизвестны

Количество азота в различных видах удобрений

Минеральные

минеральные удобрения

В состав первых входит один основной химический элемент и несколько других в незначительных количествах. В составе комплексных до 3-х основных элементов и несколько дополнительных в небольших количествах.

Каждый вид азотосодержащих удобрений отличается долей содержащегося азота от общей массы.

Простые минеральные удобрения:

Аммиачные:

  • жидкий аммиак — 82,3%;
  • водный аммиак — 17-21%;
  • сульфат аммония — 20,5%;
  • хлористый аммоний — 24-25%;

Нитратные:

  • натриевая селитра — 16,4%;
  • кальциевая селитра — 13,5-15,5%;

Комплексные:

Аммиачно-нитратные:

  • аммиачная селитра — 34-35%;
  • известково-аммиачная селитра — 20,5%;
  • аммиакаты на основе аммиачной селитры — 34,4 -41%;
  • аммиакаты на основе кальциевой селитры — 30,5-31,6%;
  • сульфонитрат аммония — 25,5-26,5%.

Фосфорные

Фосфорные удобрения

Двухкомпонентные:

  • азотофосфат — 33% азота (N), 3-5% фосфора (P);
  • аммофосфат — 6% (N), 45-46% (P);
  • диаммонийфосфат — 18% (N), 46% фосфатов;
  • аммофос — 11-12% (N), 44-50% фосфорной кислоты (H₃PO₄);
  • нитрофосфат — 32-33% (N), 1,3-2,6% (P).

Трехкомпонентные:

  • суперфос-NS- 12% (N), 25%(H₃PO₄) , 25% серы (S);
  • нитрофоска — 12-17% (N), 12-17% (P), 12-17% калия (K);
  • аммофоска — 12% (N), 15% (P), 15% (K), 14% (S);
  • диаммофоска — 10% (N) (аммонийная форма), 26% (H₃PO₄), 26% (K).

Фосфорно-калийные удобрения не содержат хлора и натрия, поэтому подходят для подкормки любых овощей, ягод, фруктов.

Карбамид

  • мочевина — 46% азота;
  • мочевина-формальдегид — 38-42%;
  • аммиакаты на основе карбамида — 37-40%.

Прежде чем внести удобрение в почву, необходимо рассчитать его количество. Для этого нужно знать состав почвы, содержание в ней азота, необходимую норму потребления его для растений, подкормка которых планируется.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector