Разновидности и типы клонирования
Содержание:
- Клонирование на службе у садоводства
- Недостатки клонирования
- Молекулярное клонирование
- Клонирование или естественное размножение
- Второй этап
- методы
- История термина
- Клонирование растений
- Клонирование многоклеточных организмов
- Этические последствия
- Питательная среда для клонирования
- История клонирования
- Корейский бизнес-проект заработка на клонировании
Клонирование на службе у садоводства
Можно сказать, что природа в какой-то степени превзошла человека в искусстве клонирования, и это явление вовсе не чуждо естественному ходу вещей. Человек давно взял на вооружение этот способ тиражирования копий интересных для него организмов, и в первую очередь – растений. Способов клонирования или, как его принято называть в отношении растений – вегетативного размножения, немало. Это черенкование, отделение усов (например, у земляники), отводки, прививки, разделение кустов.
В начале XX века наука подарила садоводству новый метод размножения – in vitro (ин витро), или культуру изолированных тканей и органов растений. Суть метода в том, что части органов или отдельные органы (обычно небольшого размера) растений стерилизуют и помещают в изолированные стерильные условия, где проходит их выращивание на искусственной питательной среде. В качестве изолированных условий обычно выступают герметично закрытые пробирки или иные прозрачные сосуды.
Контейнеры с клонированными растениями, готовые к продаже
Логичным будет вопрос: зачем помещать часть растения в изолированные стерильные условия? Ведь, например, оторванный листик сенполии – это отдельный орган и его можно запросто выращивать в стаканчике с водой.
Дело в том, что в 1920-х годах ученые-биологи подошли вплотную к необходимости ответить на вопрос: какова минимальная часть растения, способного вырасти в целый организм? Пытаясь выращивать отдельные органы и их части, взятые от разных растений, ученые столкнулись с существенным препятствием: чем меньше был изолированный фрагмент растения, тем большей опасности поражения бактериями и грибами он подвергался. Попытки культивировать стерильные фрагменты растений в изолированных условиях показали, что даже очень маленький кусочек растения, если он свободен от спор бактерий и грибов, может долго оставаться живым и даже расти!
Эксперимент позволил добиться регенерации из отдельных клеток целого растения, способного к цветению. Ведь чтобы из маленького кусочка, состоящего всего из нескольких сотен или десятков клеток, вырастить полноценный организм, в котором сотни тысяч клеток, требуется значительный объем питания и энергии.
Недостатки клонирования
Как и каждая монета имеет две стороны, клонирование также имеет свою обратную сторону. Хотя клонирование может творить чудеса в генетике, оно имеет некоторые потенциальные недостатки. Клонирование, как вы знаете, копирует или реплицирует биологические признаки в организмах. Таким образом, это может уменьшить разнообразие в природе. Представьте себе несколько живых существ, абсолютно идентичных друг другу! Еще один конфликт – неясно, сумеем ли мы воплотить в жизнь все потенциальные возможности клонирования. Кроме того, есть большой вопрос, сможет ли обычный человек использовать технологии в свою пользу.
Молекулярное клонирование
Молекулярное клонирование (англ. Molecular cloning, Gene cloning) — клонирование молекул ДНК (в том числе генов, фрагментов генов, совокупностей генов, ДНК-последовательностей, не содержащих гены), другими словами — наработка большого количества идентичных ДНК-молекул с использованием живых организмов.
Благодаря фундаментальным биологическим открытиям XIX—XX веков, а именно: открытию клеточного строения тканей, открытию структуры клеточного ядра, хромосом, ДНК, генов, — стало возможным то, что ныне носит название молекулярного клонирования. Это технология клонирования наименьших биологических объектов — молекул ДНК, их частей и даже отдельных генов. Для молекулярного клонирования ДНК (обычно тем или иным способом изменённую) вводят в вектор (например, бактериальную плазмиду или геном бактериофага). Размножаясь, бактерии и фаги многократно увеличивают количество введенной ДНК, в точности сохраняя её структуру. Чтобы затем выделить большое количество такой ДНК, необходимо отделить бактерии или фаги, которые её содержат, от всех остальных, для чего и применяют клонирование, то есть выделение и размножение бактериального или фагового клона, содержащего необходимые молекулы ДНК. Для облегчения селекции бактериальных клонов в плазмиды обычно вводят ген резистентности к антибиотику, чаще всего ампициллину, в присутствии которого погибают все бактерии, не имеющие клонируемой плазмиды. Такое клонирование необходимо для изучения биологических молекул, их идентификации, решения вопросов клонирования тканей и др.
Клонирование или естественное размножение
Вопрос о способности дать потомство клонированными существами был снят. Овечка Долли произвела на свет 6 ягнят. Они были зачаты естественным путем и родились также. Кстати в отличие от матери, потомство оказалось здоровее, а их жизнь продолжительнее.
Размножение половым путем защищает будущее потомство от накопления однотипных мутаций. Набор двух типов генов разных носителей отца и матери повышает устойчивость и создает условия для появления новых комбинаций. Такой способ размножения поддерживает разнообразие вида. Увеличивает возможности адаптации к изменяющимся условиям.
Какая перспектива у многоразового клонирования одних и тех же ДНК с накопленными мутациями пока неизвестно. Но бытует предположение о постепенном вырождении из-за отсутствия достаточного числа новых вариаций.
Интересно: Защитники клонирования убеждают в несостоятельности такого предположения. На земле уже живет больше 7,5 млрд. человек, время, когда количество клонов достигнет хотя бы 1 млн. слишком отдалено в перспективе. Массовым процесс не будет из-за стоимости и сложности. Но даже эта цифра не способна сильно повлиять на генетическое разнообразие. Поэтому вариативность человеческого генома надолго сохранится естественным путем.
Второй этап
На первом этапе клонирования растений от материнского растения нужно отделить выбранный вами черенок. Для этого подойдет небольшой острый режущий предмет – маникюрные ножницы, лезвие бритвы, маленький нож и т. д. Предмет, выбранный для обрезания, обязательно нужно продезинфицировать спиртом, чтобы бактерии не попали в срез черенка.
На втором этапе клонирования растений начинается их укоренение – то есть образование корней. Чтобы корни были гуще и крепче, у черенка обрезаются все листья. Срез обновляется по мере необходимости. Можно оставить растение в обычной воде и ждать прорастания корней, но лучше использовать самодельный или покупной активатор корнеобразования.
Из не фабричных активаторов роста корней можно использовать кислоты: индолилуксусную, индолилмасляную, нафтилуксусную, янтарную и марганцевокислый калий. Из безопасных корнеобразователей известен простой мед, в который нужно обмакивать срез, а также сок алоэ. Следует не допускать передозировки активаторами роста – от этого растение может перестать развиваться и даже погибнуть.
Их всего пять:
- Под микроскопом в стерильных условиях у растения отщипывается малое количество меристемы. Это называется взятием образца для клонирования. Из меристемы в будущем появятся все ткани и органы будущего клона.
- Дальше с тканью меристемы поступают так же, как с черенком – дезинфицируют срез и помещают образец в питательную среду.
- Когда растение достигнет фазы микрокопии, с него опять срезают черенки под микроскопом и каждый кладут в питательный раствор. Затем из каждого черенка вырастает микрорастение. С него опять берут черенки и выращивают из них микрокопии. Так продолжается неограниченное количество раз до тех пор, пока не образуется требуемое количество клонов.
- Подросшие растения высаживают в специальные установки для подготовки к условиям жизни в открытом грунте.
- Взрослые растения пересаживают в теплицу и готовят к высадке в открытую почву.
методы
Ядерный перенос соматических клеток
Как правило, процесс клонирования млекопитающих происходит с помощью метода, известного как «перенос ядра соматической клетки». Это была методика, используемая исследователями в Институте Рослина для клонирования овцы Долли.
В нашем организме мы можем дифференцировать два типа клеток: соматические и половые. Первыми являются те, которые образуют «тело» или ткани человека, а половые — это гамет, как яйцеклетки, так и сперматозоиды..
Они отличаются в основном количеством хромосом, соматические — диплоидными (два набора хромосом), а гаплоидные полы содержат только половину. У человека клетки организма обладают 46 хромосомами, а половые — только 23.
Ядерный перенос соматических клеток — как следует из названия — включает в себя извлечение ядра из соматической клетки и вставку его в яйцеклетку, ядро которой было удалено.
Индуцированная плюрипотентная стволовая клетка
Другой метод, менее эффективный и гораздо более трудоемкий, чем предыдущий, — это метод «индуцированных плюрипотентных стволовых клеток». Плюрипотентные клетки обладают способностью вызывать любой тип ткани — в отличие от общей клетки организма, которая была запрограммирована для выполнения определенной функции..
Метод основан на введении генов, называемых «факторами репрограммирования», которые восстанавливают плюрипотентные способности взрослой клетки..
Одним из наиболее важных ограничений этого метода является потенциальное развитие раковых клеток. Однако прогресс в технологии улучшил и уменьшил возможный ущерб клонированному организму..
История термина
Термин клонирование пришёл в русский язык из английского (clone, cloning).
Первоначально слово клон (англ. cloning от др.-греч. κλών — «веточка, побег, отпрыск») стали употреблять для группы растений (например, фруктовых деревьев), полученных от одного растения-производителя вегетативным (не семенным) способом. Эти растения-потомки в точности повторяли качества своего прародителя и служили основанием для выведения нового сорта (в случае полезности их свойств для садоводства). Позже клоном стали называть не только всю такую группу, но и каждое отдельное растение в ней (кроме первого), а получение таких потомков — клонированием.
Со временем значение термина расширилось, и его стали употреблять при выращивании культур бактерий.
Успехи биологии показали, что и у растений, и у бактерий сходство потомков с организмом-производителем обусловливается генетической идентичностью всех членов клона. Тогда уже термин клонирование стали употреблять для обозначения производства любых линий организмов, идентичных данному и являющихся его потомками.
Позже название клонирование было перенесено и на саму технологию получения идентичных организмов, известную как замещение ядра, а потом также и на все организмы, полученные по такой технологии, от первых головастиков до овцы Долли.
И уже в конце 90-х годов XX века, подразумевая возможность применения той же технологии для получения генетически идентичных человеческих индивидов, заговорили и о клонировании человека. Термин перестал быть достоянием научной общественности, его подхватили СМИ, киноискусство, литература, производители компьютерных игр, и он вошёл в язык как общеупотребительное слово, уже не имеющее того специального значения, которым он обладал около ста лет назад.
Клонирование растений
Клонирование растений (более общеупотребимы термины «культуры тканей in vitro», «клональное микроразмножение растений») осуществляется путём регенерации целого растения из каллуса путём изменения пропорционального соотношений цитокининов и ауксинов в питательной среде. Для получения первичного каллуса можно использовать любые клетки и ткани растения (кроме находящихся в премортальном состоянии) ввиду того, что клетки растений способны к дедифференциации при определённых концентрациях фитогормонов в питательной среде. Но чаще используют для этой цели клетки меристемы ввиду их малой степени дифференциации. В питательную среду для каллусообразования обязательно входят ауксин (для дедифференциации клеток) и цитокинин (для индукции клеточных делений). После получения каллусной культуры каллус можно разделить и каждую часть использовать для регенерации целых растений. Так как каллус является бесформенной недифференцированной клеточной массой, то для регенерации растения необходимо индуцировать морфогенез путём изменения концентраций фитогормонов в среде. Клонирование растений позволяет получать безвирусный посадочный материал (при использовании апикальной меристемы как источника клеток), быстрого размножения растений в больших масштабах (в том числе редких и исчезающих), клонирование из пыльников и последующее восстановление диплоидности позволяет получить гомозиготные по всем генам растения, которые можно использовать в дальнейшей селекции. Также можно культивировать на искусственных питательных средах протопласты растений, из которых в некоторых случаях можно регенерировать целые растения (протопласты удобны для трансгенеза ввиду отсутствия у них клеточной стенки и возможности слияния с другими клетками).
В случае с орхидеями конкретному растению, культивару, может быть дано неформальное название — имя клона, но в том случае, если эта орхидея имеет превосходные качества для данного вида (или гибрида). Пример: × Laeliocattleya Hsin Buu Lady ‘Red Beauty’.
Клонирование многоклеточных организмов
Наибольшее внимание учёных и общественности привлекает клонирование многоклеточных организмов, которое стало возможным благодаря успехам генной инженерии.
Создавая особые условия и вмешиваясь в структуру ядра клетки, специалисты заставляют её развиваться в нужную ткань или даже в целый организм. Допускается принципиальная возможность воспроизведения даже умершего организма, при условии сохранения его генетического материала.. Различают полное (репродуктивное) и частичное клонирование организмов
При полном воссоздаётся весь организм целиком, при частичном — организм воссоздаётся не полностью (например, лишь те или иные его ткани).
Различают полное (репродуктивное) и частичное клонирование организмов. При полном воссоздаётся весь организм целиком, при частичном — организм воссоздаётся не полностью (например, лишь те или иные его ткани).
Репродуктивное клонирование предполагает, что в результате получается целый организм. Кроме научных целей оно может применяться для восстановления исчезнувших видов или сохранения редких видов.
Одно из перспективных применений клонирования тканей — клеточная терапия в медицине. Такие ткани, полученные из стволовых клеток пациента, могли бы компенсировать недостаток и дефекты собственных тканей организма и не отторгаться при трансплантации. Это так называемое терапевтическое клонирование.
Терапевтическое клонирование предполагает, что в результате намеренно не получается целый организм. Его развитие останавливают заранее, а получившиеся эмбриональные стволовые клетки используют для получения нужных тканей или других биологических продуктов. Эксперименты показывают, что терапевтическое клонирование может быть с успехом применено для лечения некоторых заболеваний, считавшихся неизлечимыми.
Клонирование человека
Основная статья: Клонирование человека
К 2015 году около 70 стран запретили законодательно клонирование человека.
В РФ принят федеральный закон № 54-ФЗ от 20 мая 2002 г. «О временном запрете на клонирование человека».
Этические последствия
В биоэтике этика клонирования относится к множеству этических позиций в отношении практики и возможностей клонирования , особенно клонирования человека. Хотя многие из этих взглядов имеют религиозное происхождение, вопросы, возникающие в связи с клонированием, сталкиваются и со светскими взглядами . Терапевтическое и репродуктивное клонирование человека не используются в коммерческих целях; в настоящее время животные клонируются в лабораториях и в животноводстве.
Защитники поддерживают развитие терапевтического клонирования с целью создания тканей и целых органов для лечения пациентов, которые иначе не могут получить трансплантаты, чтобы избежать необходимости в иммунодепрессивных препаратах и предотвратить эффекты старения. Сторонники репродуктивного клонирования считают, что родители, которые иначе не могут производить потомство, должны иметь доступ к этой технологии.
Противодействие терапевтическому клонированию в основном сосредоточено вокруг статуса эмбриональных стволовых клеток , что связано с дебатами об абортах .
Некоторые противники репродуктивного клонирования обеспокоены тем, что технологии еще недостаточно развиты, чтобы быть безопасными — например, позиция Американской ассоциации развития науки по состоянию на 2014 год, в то время как другие подчеркивают, что репродуктивное клонирование может быть подвержено злоупотреблениям (что приводит к поколение людей, чьи органы и ткани будут извлечены), и обеспокоены тем, как клонированные особи могут интегрироваться в семьи и общество в целом. Некоторые противники поднимут вопросы о том, есть ли у клонов права. «Будущее клонирования» вызывает серьезные вопросы относительно того, есть ли у эмбрионов какие-либо права или право на жизнь эмбриона отменяется волей донора.
Религиозные группы разделены: некоторые выступают против технологий, узурпирующих роль Бога в творении и, в той мере, в которой используются эмбрионы, разрушающих человеческую жизнь; другие поддерживают потенциальную пользу терапевтического клонирования для спасения жизни.
Питательная среда для клонирования
Искусственная питательная среда – единственный компонент технологии размножения in vitro, привнесенный человеком. Но чуждых природе веществ в этой среде практически нет. В ее состав входят:
- сбалансированный комплекс минеральных солей;
- сахароза (сахар без примесей);
- витамины (В1, В3, B6, В8, С), необходимые для поддержания роста;
- гормоны (вещества, регулирующие и направляющие рост в необходимую сторону).
Присутствие в среде гормонов может насторожить любителей экологически чистых продуктов. Но давайте вспомним историю этого метода размножения. Французский ученый Жорж Морель в 1960 г. разработал и предложил технологию массового размножения орхидей в культуре in vitro. А одним из основных компонентов среды, который в то время заменял функцию гормонов, вплоть до 80-х годов был сок кокосовых орехов.
В соке кокоса содержатся те же гормоны, которые сейчас отдельно добавляют в питательную среду, а значит, вещества, которые могут показаться нежелательными «искусственными» компонентами, оказались чуть ли не одними из самых естественных.
Технология, предложенная Ж. Морелем, позволяет быстро и эффективно размножать практически любые растения. Ей дали название – клональное микроразмножение. Большинство рододендронов и орхидей, продающихся сегодня в цветочных магазинах, были произведены при помощи именно этого метода. Особенно замечательно то, что эта удивительная технология позволяет размножать в требуемом количестве растения, которые обычно способны давать отростки всего лишь раз в год.
Еще одна уникальная особенность технологии в том, что размножение растений проводится в изолированных условиях, которые позволяют сохранить клоны свободными от грибковых, бактериальных и вирусных болезней. Отсутствие заболеваний – залог полноценного раскрытия потенциала растения.
Надеемся, что теперь слово клон стало более понятным и не таким пугающим, а клонирование и технология клонального микроразмножения подтолкнет вас к увлечению этими интересными процессами.
Сейчас эта технология стала как никогда близка и доступна: с ее помощью получают высококачественный посадочный материал самых разных культур
Мы, сотрудники компании ООО НПП «МИКРОКЛОН», благодарим вас за внимание и будем рады познакомить ближе с миром клонального микроразмножения
История клонирования
Первый успешный проект клонирования млекопитающего – овечки Долли – датирован 05.07.1996 г. Его реализовали в Шотландии. Но первые клоны-зародыши были получены в 1892 году, когда Ганс Дрейш сумел разделить двуклеточный эмбрион морского ежа на две отдельные клетки, и повторил опыт с четырехклеточным. Все ежи выросли. Но Долли первое млекопитающее, выращенное из ДНК взрослой особи, а не эмбриона. Еще одно отличие овечки, она первое животное, созданное при вмешательстве в ядерную структуру клетки.
Прорыв Яна Вильмута «создателя» Долли в том, что он проводил эксперименты не с зародышами или молодыми особями, а воспользовался генетическим материалом взрослой 6-летней овцы. Он взял клетки с неизмененной нативной структурой ДНК из молочной железы. Подождал прекращения деления и извлек из них ядро. Затем поместил их в яйцеклетку другой особи. Для опыта использовали 277 оплодотворенных клеток, выжила только одна. За вклад в науку Вильмут получил рыцарское звание, присвоенное королевой Елизаветой II.
На сегодня генной инженерией клонированы:
Год | Животное |
1970 | Лягушка |
1985 | Рыба |
1986 | Мышь из клеточного материала эмбриона |
1996 | Овца из клеточного материала взрослой особи |
1998 | Корова |
1999 | Коза |
2000 | Обезьяна, свинья с органами пригодными к трансплантации человеку |
2001 | Кошка, с 2005 начато воспроизводство в коммерческих целях |
2002 | Кролик |
2003 | Олень, бык, мул |
2004 | Собака, с 2008 начато воспроизводство в коммерческих целях |
2004 | Бантенг, исчезнувший вид азиатских диких быков |
2006 | Хорек |
2009 | Верблюд |
2009 | Букардо, исчезнувший вид горного пиренейского козла |
2011 | Койот |
2018 | Макаки |
В 1999 году главная тема ученого бомонда – самочувствие овечки Долли. Изучение ее организма давало неутешительные прогнозы: организм с самого рождения, по неподтвержденным данным, был излишне состарен. Идея использовать клонированные объекты для лечения наследственных заболеваний или рака отходит на задний план.
С 2000 года значение понятия «клон» трансформируется в генетического близнеца, отсроченного по времени. В Японии проведен эксперимент появления клона животного из генов, ранее созданного клона. В Канаде с 2000 ведутся работы по выращиванию клонированного человеческого органа.
14.02.2003 года мир узнал об умерщвлении овечки Долли, причина прогрессирующее заболевание легких. Ученые разделились на 3 лагеря в установлении причин болезни клонированного животного:
- Часто овцы, живущие в неволе, страдают подобными заболеваниями.
- Неспособность теломеров, концевых участков хромосом, соединяться.
- Клонирование стало причиной ускоренного старения.
Чучело овцы было выставлено в музее Шотландии.
Корейский бизнес-проект заработка на клонировании
Пока морально-этические аспекты в отношении клонирования людей не дают покоя всему человечеству, животных продолжают «воспроизводить» из умерших предшественников. В Южной Корее это даже стало сферой сверхприбыльного бизнеса. Им занимается исследовательский фонд Sooam Biotech.
Пожилая пара из Флориды «заказала» появление на свет своего домашнего питомца – лабрадора Ланселота. После смерти пса через 4 месяца семья вновь «обрела» своего любимца. Стоимость «воскрешения» от 100 до 150 тысяч долларов, не смущает заказчиков фонда, и спрос постоянный. Число воссозданных животных уже достигает 1000. Это домашние питомцы королевских семей, знаменитостей, богатых бизнесменов. Реализованы проекты по клонированию выдающихся ищеек и собак-спасателей правоохранительных органов.
На сайте корейской компании даже представлен алгоритм действия для своих заказчиков в случае смерти домашнего любимца. Они предупреждают о возможности забора генетически пригодного материала в течение 5 суток. Поэтому животное предлагают не помещать в морозильную камеру, а только в холодильник. Со скорейшей доставкой тела в лабораторию компании.
Руководитель фонда ученый-генетик Хван У Сок был скандально выдворен из науки, по обвинениям в области опытов с человеческими эмбрионами. Но меценаты помогли ему открыть частную клинику, где вместе со своей командой генетик смог продолжить дело жизни. Кроме коммерческих проектов ученый занимается выращиванием коров, дающих молоко с интерферонами, которые помогают в лечении герпеса у человека. Второе направление — выведение свиней с органами, пригодными для трансплантации людям.
Однозначных успехов, гарантирующих стопроцентный положительный результат клонирования человека с первого раза, до сих пор нет. А в обществе много неоднозначных мнений по социально-экономическим, морально-этическим и духовно-нравственным аспектам. Поэтому опасения массового появления клонов и их угрозы человеческим прототипам остаются в рамках киношных фантазий и индивидуальный фобий.